Homework 2

Ye Yuan 20172426
July 8th, 2010

1. Because Z_{12} is cyclic and its generators denoted by a could be $1,5,7,11$, ψ is completely determined by its value g on $\psi(a)$, that is $\psi(a) = g$. In order to be homomorphic, $|g|$ must divide $|a| = 12$ otherwise after a cycle $\psi(a) = g \neq g^{12} = \psi(a^{12})$. The g in Z_{12} whose orders divide 12 are $1,2,3,4,6,12$. Thus the endomorphisms are

$$\psi(x) = y \text{ where } x \in \{1, 5, 7, 11\} \text{ and } y \in \{1, 2, 3, 4, 6, 0\}$$

The isomorphisms are $\psi(x) = 1$ where $x \in \{1, 5, 7, 11\}$ because only 1 generates Z_{12}

2. The additive group Z of all integers is isomorphic to the subgroup of even integers under the isomorphism $f(x) = 2 \ast x$.

3. (a) Z^+ is an infinite cyclic group. The automorphism group is $\{\psi(1) = 1, \psi(1) = -1\}$.

(b) G_{10} is a finite cyclic group. The automorphism group is $\{\psi(g_1) = g_2 \mid g_1, g_2 \text{ are generators of } G_{10}\}$.

(c) let g,k be two distinct elements in the group $\{(13), (23),(12)\}$ and let x,y be another two distinct ones in the same group. Then the automorphism group is $\{\psi(g) = x, \psi(k) = y\}$.

4. prove: because Z^+ is an infinite cyclic group, homomorphism from it is totally determined by $\psi(1) = g$. The homomorphism is isomorphic and surjective if $g = 1$ or -1. It’s injective otherwise.

5. prove: let C denote the center of the group G. Let g,c be some elements in G,C respectively. By definition of center, $cg = gc \Rightarrow g^{-1}cg = c \in C$. Thus C is normal.

6. typo

7. prove: let ψ denote the map $\psi: G \rightarrow G$ defined by $g \rightarrow g^{-1}$.

$\Rightarrow b^{-1}a^{-1} = \psi(ab) = \psi(a)\psi(b) = a^{-1}b^{-1}$. Thus ψ is abelian

$\Leftarrow \psi(ab) = b^{-1}a^{-1} = a^{-1}b^{-1} = \psi(a)\psi(b)$. Thus it’s homomorphic.
8. prove:

(a) for \(n = 1 \) and \(m = 0 \), \(S_1 \) is a singleton set and \(S_0 \) is the empty set. They’re not isomorphic to each other.
(b) for \(n, m \geq 2 \), \(S_n \) and \(S_m \) have order \(n! \) and \(m! \) respectively. If \(n \neq m \), then \(n! \neq m! \). Thus there is no bijective map between \(S_n \) and \(S_m \). Hence they’re not isomorphic. Thus for \(n \neq m \), \(S_n \) and \(S_m \) are not isomorphic.

9. (a) No. e.g. \(1 \sim 2, 2 \sim 3 \), but \(1 \sim 3 \) is false.
(b) No. e.g. \(1 \sim 2 \), but \(2 \sim 1 \) is false.

10. prove:

(a) transitive: let \(a, b, c \in G \), \(a \sim b \), \(b \sim c \). \(a, b, c \) are distinct.
 \[
 \begin{align*}
 a \sim b & \Rightarrow b^{-1}a \in H \\
 b \sim c & \Rightarrow c^{-1}b \in H \\
 \text{Thus } c^{-1}bb^{-1}a & = c^{-1}a \in H \Rightarrow a \sim c
 \end{align*}
 \]
(b) symmetric: let \(a, b \in G \), \(a \sim b \). \(a, b \) are distinct.
 \[
 \begin{align*}
 a \sim b & \Rightarrow b^{-1}a \in H \Rightarrow a^{-1}b \in H \text{ because } H \text{ is a group } \Rightarrow b \sim a.
 \end{align*}
 \]
(c) reflexive: let \(a \in G \)
 \[
 a^{-1}a = e \in H
 \]
 Thus \(a \sim a \)

11. (a) prove: let \(a, b, c \in G \), \(a \sim b \), \(b \sim c \). \(a, b, c \) are distinct.

 i. transitive: \(a \sim b \Rightarrow \exists g \in G \text{ s.t. } gag^{-1} = b \)
 \[
 \begin{align*}
 b \sim c & \Rightarrow \exists k \in G \text{ s.t. } kbk^{-1} = c \\
 \text{Thus } kgag^{-1}k^{-1} & = c \Rightarrow a \sim c
 \end{align*}
 \]
 ii. symmetric: let \(a, b \in G \), \(a \sim b \). \(a, b \) are distinct.
 \[
 a \sim b \Rightarrow \exists g \in G \text{ s.t. } gag^{-1} = b \Rightarrow a = g^{-1}bg \Rightarrow b \sim a.
 \]
 iii. reflexive: let \(a \in G \)
 \[
 e^{-1}ae = a
 \]
 Thus \(a \sim a \)

(b) Elements in the center of \(G \).

12. infinite. Because \(| Z | = \infty \) and \(| nZ | = n \), \(| Z : nZ | = | Z | / | nZ | = \infty \)

13. prove: because both 3 and 5 are prime numbers, \(H \) and \(K \) are generated by some elements \(h, k \) that are not identities and they have the forms \(\{1, h, h^2\} \) and \(\{1, k, ..., k^4\} \) respectively, according to Corollary 6.13. \(h \) and \(k \) can not be identical because they have different orders. Thus the only element in the intersection of \(H \) and \(K \) is 1. Thus \(H \cap K = \{1\} \).
14. (a) prove: because index of subgroup H is 2, there are only two right cosets, namely H itself and Hx where x doesn’t belong to H. Thus $Hx=G-H$ by corollary 6.3.

Similarly, there’re two left cosets H and yH and $yH=G-H=Hx$.
Thus H is normal by prop 6.18.

(b) D_3